Machine learning method for the classification of the state of living organisms’ oscillations

Author:

Kweku David,Villalba Maria I.,Willaert Ronnie G.,Yantorno Osvaldo M.,Vela Maria E.,Panorska Anna K.,Kasas Sandor

Abstract

The World Health Organization highlights the urgent need to address the global threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of bacterial response to antibiotics and their virulence state is crucial for the effective treatment of bacterial infections. However, current methods for investigating bacterial antibiotic response and metabolic state are time-consuming and lack accuracy. To address these limitations, we propose a novel method for classifying bacterial virulence based on statistical analysis of nanomotion recordings. We demonstrated the method by classifying living Bordetella pertussis bacteria in the virulent or avirulence phase, and dead bacteria, based on their cellular nanomotion signal. Our method offers significant advantages over current approaches, as it is faster and more accurate. Additionally, its versatility allows for the analysis of cellular nanomotion in various applications beyond bacterial virulence classification.

Publisher

Frontiers Media SA

Reference40 articles.

1. Automated detection of corneal edema with deep learning-assisted second harmonic generation microscopy;Anton;IEEE JSTQE,2023

2. Atomic force microscope;Binnig;Phys. Rev. Lett.,1886

3. Random forests;Breiman;Mach. Learn.,2001

4. e Breiman and Cutler's Random Forests for Classification and Regression BreimanL. CutlerA. LiawA. WienerhttpsM. 2022

5. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract;Carbonetti;Infect. Immun.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3