Electroactive shape memory polyurethane composites reinforced with octadecyl isocyanate-functionalized multi-walled carbon nanotubes

Author:

Sun Yadong,Teng Jiachi,Kuang Yi,Yang Shengxiang,Yang Jiquan,Mao Hongli,Gu Zhongwei

Abstract

Shape memory polymers (SMPs) have a wide range of potential applications in many fields. In particular, electrically driven SMPs have attracted increasing attention due to their unique electrical deformation behaviors. Carbon nanotubes (CNTs) are often used as SMP conductive fillers because of their excellent electrical conductivities. However, raw CNTs do not disperse into the polymer matrix well. This strictly limits their use. In this study, to improve their dispersion performance characteristics in the polymer matrix, hydroxylated multi-walled carbon nanotubes (MWCNT-OHs) were functionalized with octadecyl isocyanate (i-MWCNTs). Polyurethane with shape memory properties (SMPU) was synthesized using polycaprolactone diol (PCL-diol), hexamethylene diisocyanate (HDI), and 1,4-butanediol (BDO) at a 1:5:4 ratio. Then, electroactive shape memory composites were developed by blending SMPU with i-MWCNTs to produce SMPU/i-MWCNTs. The functionalized i-MWCNTs exhibited better dispersibility characteristics in organic solvents and SMPU composites than the MWCNT-OHs. The addition of i-MWCNTs reduced the crystallinity of SMPU without affecting the original chemical structure. In addition, the hydrogen bond index and melting temperature of the SMPU soft segment decreased significantly, and the thermal decomposition temperatures of the composites increased. The SMPU/i-MWCNT composites exhibited conductivity when the i-MWCNT content was 0.5 wt%. This conductivity increased with the i-MWCNT content. In addition, when the i-MWCNT content exceeded 1 wt%, the composite temperature could increase beyond 60°C within 140 s and the temporary structure could be restored to its initial state within 120 s using a voltage of 30 eV. Therefore, the functionalized CNTs exhibit excellent potential for use in the development of electroactive shape memory composites, which may be used in flexible electronics and other fields.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3