The effect of heat pre-treatment on the anaerobic digestion of high-solid pig manure under high organic loading level

Author:

Li Pengfei,Wang Jianlin,Peng Hao,Li Qichen,Wang Ming,Yan Wencong,Boboua Stopira Yannick Benz,Li Wenzhe,Sun Yong,Zheng Guoxiang,Zhang Hongqiong

Abstract

Since more and more large-scale farms appear in China and changes in fecal sewage source disposal, the production of high-concentration solid manure waste is also increasing, and its conversion and utilization are gaining attention. This study investigated the effect of heat pre-treatment (HPT) on the thermophilic anaerobic digestion (AD) of high-solid manure (HSM). Pig manure (PM) feed with a total solids of 13% was used for the HPT and subsequent anaerobic digestion (AD) test. The HPT was carried out at 60°C, 80°C, and 100°C, respectively, for 15 min after the heating reached the set temperature. The results show that HPT led to PM feed COD solubilization, observing a maximum increase of 24.57% after pretreated at 100°C, and the treated PM feed under this condition received the maximum methane production potential of 264.64 mL·g−1 VS in batch AD test, which was 28.76% higher than that of the untreated group. Another semi-continuous AD test explored the maximum volume biogas production rate (VBPR). It involves two organic loading rates (OLR) of 13.4 and 17.8 g VSadded·L−1·d−1. The continuous test exhibited that all the HPT groups could produce biogas normally when the OLR increased to the high level, while the digester fed with untreated PM showed failure. The maximum VBPR of 4.71 L L−1·d−1 was observed from PM feed after pre-treated at 100°C and running at the high OLR. This reveals that thermal treatment can weaken the impact of a larger volume of feed on the AD system. Energy balance analysis demonstrates that it is necessary to use a heat exchanger to reuse energy in the HPT process to reduce the amount of energy input. In this case, the energy input to energy output (Ei/Eo) ranged from 0.34 to 0.55, which was much less than one, suggesting that biogas increment due to heat treatment can reasonably cover the energy consumption of the pre-treatment itself. Thus combining HPT and high-load anaerobic digestion of PM was suitable.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3