An enzyme-activatable dual-readout probe for sensitive β-galactosidase sensing and Escherichia coli analysis

Author:

Huang Yifang,Feng Weiwei,Zhang Guo-Qiang,Qiu Yuling,Li Linlin,Pan Liqiu,Cao Nannan

Abstract

Rapid and accurate sensing of β-galactosidase (β-gal) activity is particularly critical for the early detection of many diseases and has become a topic of interest in recent years. However, most traditional probes for β-gal sensing often suffer from the disadvantages of narrow dynamic range, low reaction efficiency and are only employed with either colorimetric or fluorescence sensing. Furthermore, β-galactosidase sensing based assay for efficient detection and antibiotic resistance analysis of Escherichia coli (E.coli) is not available. Here, an enzyme-induced probe assay was reported for dual sensitive fluorescence and colorimetric measurement of β-gal activity, and was further employed for detection of Escherichia coli and their antibiotic resistance analysis. The DCM-βgal probe was virtually non-emissive in aqueous solution, while it could be activated by β-gal to produce bright emission. Under optimized conditions, DCM-βgal displayed high sensitivity, selectivity and rapid response to β-gal with a low detection limit of 1.5 × 10−3 U ml−1. Importantly, this assay was successfully applied to sensitive detection of E. coli cells with a fast detection process within 5 h and a low detection concentration of 1 × 103 CFU ml−1. Furthermore, the enzyme-activatable assay was also successfully applied for high throughput E. coli antibiotic resistance analysis. The DCM-βgal strategy is applied for the first time on the detection of E. coli cells and their antibiotic resistance analysis. It is provided with the advantages of high selectively, a simple operation, low cost and rapid detection. The detection platform can also be extended to analyze the level of β-gal in other types of cells or biological samples. Overall, the simple, effective and dual-readout assay holds promise for efficient sensing of β-gal activity and provides a potential tool for E. coli detection and their antibiotic resistance analysis.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3