Estimating population viability of the northern Great Plains piping plover population considering updated population structure, climate change, and intensive management

Author:

Swift Rose J.,Anteau Michael J.,Ellis Kristen S.,MacDonald Garrett J.,Ring Megan M.,Sherfy Mark H.,Toy Dustin L.

Abstract

One challenge in wildlife conservation is understanding how various threats and management actions may influence long-term population viability. This is particularly evident when there is considerable uncertainty regarding population structure and vital rates. Reassessment of current knowledge and population trends is necessary for listed species to improve management actions that benefit conservation. We present an updated population viability analysis for northern Great Plains piping plovers (Charadrius melodus circumcinctus) based on the latest scientific data on survival, fecundity, and connectivity. Further, we explore the consequences of potential management actions and the stochastic effects of global climate change on population viability through changes in survival and fecundity. Our results predict elevated risks of extinction after 50 years (0.088 – 0.373) compared to previous predictions (0.033) based on assumed conditions of low connectivity among four major breeding groups structured as a metapopulation. We explored eight scenarios based on empirically-derived, higher connectivity rates and found that the northern Great Plains population never had a mean predicted population growth rate greater than one (0.946 – 0.996). Two scenarios that simulated a reduction in adult survival showed higher extinction probabilities (0.267 – 0.373), whereas two other scenarios that simulated an increase in fecundity exhibited lower extinction probabilities (0.088 – 0.103). These results indicate that viability of the northern Great Plains population of piping plovers could be improved with management actions that increase fecundity as long as adult survival is not simultaneously reduced. Lastly, breeding groups appeared to function less independently when connectivity rates were higher, as the breeding population was divided evenly among breeding groups. This indicates that the presumed metapopulation structure of our study system may need to be re-evaluated, and that empirically-based estimates of connectivity are essential to assessing population viability of mobile species that exhibit a spatially structured distribution.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3