Author:
Kim Eun Ho,Lee Won Seok,Lee Jae Hee,Kwon Dong Rak
Abstract
IntroductionAlzheimer’s disease (AD) poses an increasing global health challenge and is marked by gradual cognitive deterioration, memory impairment, and neuroinflammation. Innovative therapeutic approaches as non-pharmacological protocol are urgently needed with side effect risk of drugs. Microcurrent therapy, a non-invasive modality involving low-level electrical currents, has emerged as a potential solution to address AD’s complex pathogenesis. This study investigates the optimal application of microcurrent therapy as a clinical protocol for AD, utilizing a comprehensive approach that integrates behavioral assessments and neuroinflammation evaluation in a mouse model of dementia.Methods and resultsThe results reveal that microcurrent therapy holds promise in ameliorating memory impairment and reducing neuroinflammation in AD. Behavioral assessments, including the Novel Object Recognition Test (NOR) and Radial Arm Maze Test (RAM), demonstrated improved cognitive function following microcurrent therapy. Furthermore, microcurrent therapy inhibited expression of neuroinflammatory proteins, including ionized calcium binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) in current-treated group. Mechanistic insights suggest that microcurrent therapy may modulate neuroinflammation through the regulation of MAPK signaling pathways.ConclusionThis study emphasizes the prospect of microcurrent therapy as a safe and efficacious non-pharmacological strategy for Alzheimer’s disease (AD), providing optimism to the countless individuals impacted by this debilitating ailment. These results contribute to the developments of an innovative clinical protocol for AD and recovery from neurological injury, underscoring the significance of investigating unconventional therapeutic approaches for addressing this complex condition.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献