Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulated in Exercise in a Mouse Model of Parkinson’s Disease

Author:

Tong Weifang,Zhang Kunshan,Yao Hongkai,Li Lixi,Hu Yong,Zhang Jingxing,Song Yunping,Guan Qiang,Li Siguang,Sun Yi E.,Jin Lingjing

Abstract

BackgroundExercise plays an essential role in improving motor symptoms in Parkinson’s disease (PD), but the underlying mechanism in the central nervous system remains unclear.MethodsMotor ability was observed after 12-week treadmill exercise on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. RNA-sequencing on four brain regions (cerebellum, cortex, substantia nigra (SN), and striatum) from control animals, MPTP-induced PD, and MPTP-induced PD model treated with exercise for 12 weeks were performed. Transcriptional networks on the four regions were further identified by an integrative network biology approach.ResultsThe 12-week treadmill exercise significantly improved the motor ability of an MPTP-induced mouse model of PD. RNA-seq analysis showed SN and striatum were remarkably different among individual region’s response to exercise in the PD model. Especially, synaptic regulation pathways about axon guidance, synapse assembly, neurogenesis, synaptogenesis, transmitter transport-related pathway, and synaptic regulation genes, including Neurod2, Rtn4rl2, and Cd5, were upregulated in SN and striatum. Lastly, immunofluorescence staining revealed that exercise rescued the loss of TH+ synapses in the striatal region in PD mice, which validates the key role of synaptic regulation pathways in exercise-induced protective effects in vivo.ConclusionSN and striatum are important brain regions in which critical transcriptional changes, such as in synaptic regulation pathways, occur after the exercise intervention on the PD model.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3