Research progress of ferroptosis in Parkinson’s disease: a bibliometric and visual analysis

Author:

Lu Yangguang,Chen Yiqun,Jiang Zihan,Ge Yaoying,Yao Ruotong,Geng Shangze,Zhang Jinxiu,Chen Feng,Wang Yukai,Chen Guangyong,Yang Dehao

Abstract

BackgroundIn recent years, the role of ferroptosis in Parkinson’s disease (PD) has become a research hotspot based on evidence of abnormal iron deposition and lipid peroxidation damage in the brains of PD patients. This study aims to examine the relevant research on ferroptosis and PD from a bibliometric perspective.MethodsOriginal research and review articles related to ferroptosis and PD were retrieved from the Web of Science Core Collection (WOSCC) database. Statistical analysis and visualization of information including countries, institutions, authors, journals, and keywords of the included studies were conducted using the R software package “bibliometrix.”ResultsA total of 414 articles met the inclusion criteria, averaging 37.86 citations per article. From 2012 to 2022, the average annual growth rate of research in this area was 63.44%. The corresponding authors of published articles were mainly affiliated with institutions in China, the United States, and Australia. Shanghai Jiao Tong University in China and the University of Melbourne in Australia emerged as the most active and influential institutions. The journal with the highest H-index and publication output was Free Radical Biology and Medicine. “Ferroptosis,” “immunotherapy,” “prognosis” and “microenvironment” were identified as high-frequency keywords, indicating current and future research directions in this field.ConclusionThis bibliometric study provides insights into current research hotspots and emerging trends in the growing field of ferroptosis research related to PD. The high-frequency keywords identified highlight active areas of investigation involving methods, mechanisms, and populations of interest.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3