Thalamic-limbic circuit dysfunction and white matter topological alteration in Parkinson’s disease are correlated with gait disturbance

Author:

Ren Qingguo,Zhao Shuai,Yu Rong,Xu Ziliang,Liu Shuangwu,Zhang Bin,Sun Qicai,Jiang Qingjun,Zhao Cuiping,Meng Xiangshui

Abstract

BackgroundLimbic structures have recently garnered increased attention in Parkinson’s disease (PD) research. This study aims to explore changes at the whole-brain level in the structural network, specifically the white matter fibres connecting the thalamus and limbic system, and their correlation with the clinical characteristics of patients with PD.MethodsBetween December 2020 and November 2021, we prospectively enrolled 42 patients with PD and healthy controls at the movement disorder centre. All participants underwent diffusion tensor imaging (DTI), 3D T1-weighted imaging (3D-T1WI), and routine brain magnetic resonance imaging on a 3.0 T MR scanner. We employed the tract-based spatial statistical (TBSS) analytic approach, examined structural network properties, and conducted probabilistic fibre tractography to identify alterations in white matter pathways and the topological organisation associated with PD.ResultsIn patients with PD, significant changes were observed in the fibrous tracts of the prefrontal lobe, corpus callosum, and thalamus. Notably, the fibrous tracts in the prefrontal lobe and corpus callosum showed a moderate negative correlation with the Freezing of Gait Questionnaire (FOG-Q) scores (r = −0.423, p = 0.011). The hippocampus and orbitofrontal gyrus exhibited more fibre bundle parameter changes than other limbic structures. The mean streamline length between the thalamus and the orbitofrontal gyrus demonstrated a moderate negative correlation with Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) III (r = −0.435, p = 0.006). Topological parameters, including characteristic path length (Lp), global efficiency (Eg), normalised shortest path length (λ) and nodal local efficiency (Nle), correlated moderately with the MDS-UPDRS, HAMA, MoCA, PDQ-39, and FOG-Q, respectively.ConclusionDTI is a valuable tool for detecting changes in water molecule dispersion and the topological structure of the brain in patients with PD. The thalamus may play a significant role in the gait abnormalities observed in PD.

Funder

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3