Author:
Chang Zihan,Xie Fen,Li Hualing,Yuan Feilan,Zeng Lina,Shi Lin,Zhu Shuzhen,Lu Xiaohe,Wei Xiaobo,Wang Qing
Abstract
ObjectiveThis study intended to investigate whether retinal nerve fiber layer (RNFL) thickness could become a potential marker in patients with Parkinson’s disease with cognitive impairment (PD-CI).MethodsFifty-seven PD patients and 45 age-matched healthy controls (HCs) were recruited in our cross-sectional study and completed optical coherence tomography (OCT) evaluations. PD with normal cognition (PD-NC) and cognitive impairment (PD-CI) patients were divided following the 2015 Movement Disorder Society criteria. RNFL thickness was quantified in subfields of the 3.0-mm circle surrounding the optic disk; while a battery of neuropsychiatric assessments was conducted to estimate the Parkinsonism severity. General linear models and one-way ANOVA were adopted to assess RNFL thickness between subgroups with different cognitive statuses; logistic regression analyses were applied to determine the relation between RNFL and PD-CI cases.ResultsCompared with HCs, more thinning of the RNFL was observed in the inferior and temporal sectors in PD patients, especially in the PD-CI group. Inferior RNFL thickness was reduced in PD-CI compared with PD-NC patients. Logistic regression analysis found that inferior RNFL thickness was independently associated with PD-CI cases (odds ratio = 0.923, p = 0.014). Receiver operating characteristic analysis showed that the RNFL-involved combined model provided a high accuracy in screening cognitive deficiency in PD cases (area under the curve = 0.85, p < 0.001).ConclusionReduced RNFL thickness especially in the inferior sector is independently associated with PD-CI patients. Our study present new perspectives into verifying possible indicators for neuropathological processes or disease severity in Parkinsonians with cognitive dysfunction.
Funder
National Natural Science Foundation of China
Subject
Cognitive Neuroscience,Aging
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献