Classifying Parkinson’s Disease Patients With Syntactic and Socio-emotional Verbal Measures

Author:

Baez Sandra,Herrera Eduar,Trujillo Catalina,Cardona Juan F.,Diazgranados Jesus A.,Pino Mariana,Santamaría-García Hernando,Ibáñez Agustín,García Adolfo M.

Abstract

Frontostriatal disorders, such as Parkinson’s disease (PD), are characterized by progressive disruption of cortico-subcortical dopaminergic loops involved in diverse higher-order domains, including language. Indeed, syntactic and emotional language tasks have emerged as potential biomarkers of frontostriatal disturbances. However, relevant studies and models have typically considered these linguistic dimensions in isolation, overlooking the potential advantages of targeting multidimensional markers. Here, we examined whether patient classification can be improved through the joint assessment of both dimensions using sentential stimuli. We evaluated 31 early PD patients and 24 healthy controls via two syntactic measures (functional-role assignment, parsing of long-distance dependencies) and a verbal task tapping social emotions (envy, Schadenfreude) and compared their classification accuracy when analyzed in isolation and in combination. Complementarily, we replicated our approach to discriminate between patients on and off medication. Results showed that specific measures of each dimension were selectively impaired in PD. In particular, joint analysis of outcomes in functional-role assignment and Schadenfreude improved the classification accuracy of patients and controls, irrespective of their overall cognitive and affective state. These results suggest that multidimensional linguistic assessments may better capture the complexity and multi-functional impact of frontostriatal disruptions, highlighting their potential contributions in the ongoing quest for sensitive markers of PD.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3