Relationships Among Temporal Fine Structure Sensitivity, Transient Storage Capacity, and Ultra-High Frequency Hearing Thresholds in Tinnitus Patients and Normal Adults of Different Ages

Author:

Ding Yu,Liang Yibo,Cao Chunmei,Zhang Yueqi,Hu Ming

Abstract

BackgroundElderlies and tinnitus patients often find it challenging to process acoustic signals in noisy environments. The sensitivity to temporal fine structure (TFS), the transient storage capacity for TFS, and the ultra-high frequency (UHF) thresholds are all associated with aging-related damage, evidenced by speech-in-noise perception deficits. In the present study, we aimed to investigate the relationships among TFS sensitivity, transient storage capacity, and UHF thresholds in tinnitus patients and normal adults of different ages.MethodsIn the present study, 38 tinnitus patients (age ranging from 21 to 65) and 23 non-tinnitus adults (age ranging from 22 to 56) were enrolled, and some of their auditory indicators were examined, including the TFS-adaptive frequency (TFS-AF), break in interaural correlation (BIAC) delay threshold, and UHF thresholds.ResultsWe found no significant difference in TFS-AF thresholds and BIAC delay thresholds between the tinnitus group and normal group, while their relationships with age were more evident in the tinnitus group. Moreover, these two tests were only significantly correlated in the tinnitus group. UHF thresholds were significantly correlated with TFS-AF thresholds only in the tinnitus group, suggesting that the UHF hearing was positively associated with the TFS sensitivity.ConclusionThese findings indicated that the influencing factors, such as tinnitus and UHF thresholds, should be fully considered when examining age-related hearing decline, because the combination of tinnitus and poor UHF hearing might play a role in affecting hearing ability, such as TFS sensitivity.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3