Interactions Between Brain 18F-FDG PET Metabolism and Hemodynamic Parameters at Different Ages of Life: Results From a Prospective Cross-Sectional Study

Author:

Zimmermann Gaétan,Joly Laure,Schoepfer Pauline,Doyen Matthieu,Roch Veronique,Grignon Rachel,Salvi Paolo,Marie Pierre-Yves,Benetos Athanase,Verger Antoine

Abstract

Brain 18F-FDG PET imaging is useful to characterize accelerated brain aging at a pre-symptomatic stage. This study aims to examine the interactions between brain glycolytic metabolism and hemodynamic parameters in different age groups.Methods: A total of 72 patients (from 23 to 88 years of age, 38 women) without any cerebral diseases but with available cardiac, arterial peripheral, and central blood pressure measurements as well as arterial stiffness parameters obtained from brachial pressure and applanation tonometry and a brain 18F-FDG PET scan were prospectively included into this study. Quantitative voxel-to-voxel analyses were carried out to test for negative associations between brain glycolytic metabolism and individual hemodynamic parameters (p-voxel of <0.001 for the whole population and <0.005 for age groups).Results: The heart rate parameter of the whole population showed the most extensive associations with brain metabolism (15,857 mm3, T-score: 5.1), predominantly affecting the frontal and temporal regions (69% of the volume). Heart rate for the younger age group, systolic and pulse pressure for the 41–60-year-old group, and diastolic pressure for the older group were most extensively associated with brain metabolism and mainly involved the fronto-temporal lobes (respective involvement of 52.8%, 60.9%, and 65.5%) which are also the regions implicated in accelerated brain aging.Conclusion: This cross-sectional prospective study identified extensive associations between cerebral metabolism and hemodynamic parameters, indicating common aging mechanisms. Heart rate throughout adult life, systolic and pulse pressure parameters around middle age, and diastolic pressure parameters in older patients, suggest the existence of potentially therapeutic targets to prevent accelerated brain aging.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3