Altered neuroimaging patterns of cerebellum and cognition underlying the gait and balance dysfunction in cerebral small vessel disease

Author:

Mo Yuting,Mao Chenglu,Yang Dan,Ke Zhihong,Huang Lili,Yang Zhiyuan,Qin Ruomeng,Huang Yanan,Lv Weiping,Hu Zheqi,Xu Yun

Abstract

BackgroundThe mechanism of gait and balance dysfunction (GBD) in cerebral small vessel disease (CSVD) remains unclear. Evidence supports cognition engages in GBD of CSVD. The cerebellum is important in motor and cognition, while little is known about the influence of the cerebellum on GBD in CSVD.MethodsThis study is a retrospective cohort study. All participants of this study were enrolled from the CSVD individuals in Nanjing Drum Tower Hospital from 2017 to 2021. The GBD of CSVD patients was defined as Tinetti Test score ≤ 23. Cerebral cortical thickness, cerebellar gray matter volume, the amplitude of low-frequency fluctuation, functional connectivity, and modular interaction were calculated to determine the cortical atrophy and activity patterns of CSVD patients with GBD. The effect of cognitive domains during GBD in CSVD patients was explored by correlation analyses.ResultsA total of 25 CSVD patients were recruited in CSVD patients with GBD group (Tinetti Test score ≤ 23, mean age ± standard deviation: 70.000 ± 6.976 years), and 34 CSVD patients were recruited in CSVD patients without GBD group (Tinetti Test score > 23, mean age ± standard deviation: 64.029 ± 9.453 years). CSVD patients with GBD displayed worse cognitive performance and cortical atrophy in the right cerebellum VIIIa and bilateral superior temporal gyrus than those without GBD. The right postcentral gyrus, left inferior temporal gyrus, right angular gyrus, right supramarginal gyrus and right middle frontal gyrus were functionally overactivated and showed decreased modular interaction with the right cerebellum. Tinetti Test scores were negatively related to the volume of the right cerebellum VIIIa in CSVD patients with GBD. Notably, memory, especially visuospatial memory, was greatly associated with GBD in CSVD.ConclusionThe cortical atrophy and altered functional activity in sensorimotor area and ventral attention network in the cerebellum and cerebrum may underlying the GBD in CSVD. Memory might be critically cognitively responsible for GBD in CSVD.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3