Based on Network Pharmacology and Molecular Dynamics Simulations, Baicalein, an Active Ingredient of Yiqi Qingre Ziyin Method, Potentially Protects Patients With Atrophic Rhinitis From Cognitive Impairment

Author:

Kang Xueran,Sun Yuxing,Yi Bin,Jiang Chenyan,Yan Xiaojun,Chen Bin,Lu Lixing,Shi Fangze,Luo Yuanbo,Chen Yisheng,Wang Qian,Shi Runjie

Abstract

Cognition may be improved by the active ingredients of the Yiqi Qingre Ziyin method in patients with atrophic rhinitis (AR). This study aimed to identify potential targets of the Yiqi Qingre Ziyin method for the treatment of patients with cognitive impairment. Nasal mucosal tissue samples from patients with AR were subjected to proteomic assays, and differentially expressed proteins were obtained. To explore the mechanism of AR leading to mild cognitive impairment (MCI), a differential analysis of AR related differential proteins in the MCI related GSE140831 dataset was performed. Most AR-related differential proteins are also differentially expressed in peripheral blood tissues of MCI, have similar biological functions and are enriched in similar pathways. These co-expressed differential factors in AR and MCI are known as common differential proteins of AR and MCI (CDPAM). Based on the analysis and validation of the random forest, support vector machine and neural network models, CDPAM acted as a diagnostic marker for MCI risk. Cytochrome C (CYCS) was significantly upregulated in the peripheral blood of patients with MCI. The active ingredients in the Yiqi Qingre Ziqin method were obtained and targeted 137 proteins. Among these targeted proteins, CYCS belong to the CDPAM set. Molecular docking and molecular dynamics analysis revealed that baicalein, an active ingredient in the Yiqi Qingre Ziyin method, stably targeted the CYCS protein. Results of the enrichment analysis revealed that the up-regulation of CYCS expression may have a defensive effect on the cells to resist foreign stimuli. Therefore, baicalein, an active ingredient in the Yiqi Qingre Ziyin method, may prevent the development and progression of MCI by targeting the CYCS protein.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3