Author:
Lubomski Michal,Xu Xiangnan,Holmes Andrew J.,Muller Samuel,Yang Jean Y. H.,Davis Ryan L.,Sue Carolyn M.
Abstract
BackgroundAltered gut microbiome (GM) composition has been established in Parkinson’s disease (PD). However, few studies have longitudinally investigated the GM in PD, or the impact of device-assisted therapies.ObjectivesTo investigate the temporal stability of GM profiles from PD patients on standard therapies and those initiating device-assisted therapies (DAT) and define multivariate models of disease and progression.MethodsWe evaluated validated clinical questionnaires and stool samples from 74 PD patients and 74 household controls (HCs) at 0, 6, and 12 months. Faster or slower disease progression was defined from levodopa equivalence dose and motor severity measures. 19 PD patients initiating Deep Brain Stimulation or Levodopa-Carbidopa Intestinal Gel were separately evaluated at 0, 6, and 12 months post-therapy initiation.ResultsPersistent underrepresentation of short-chain fatty-acid-producing bacteria, Butyricicoccus, Fusicatenibacter, Lachnospiraceae ND3007 group, and Erysipelotrichaceae UCG-003, were apparent in PD patients relative to controls. A sustained effect of DAT initiation on GM associations with PD was not observed. PD progression analysis indicated that the genus Barnesiella was underrepresented in faster progressing PD patients at t = 0 and t = 12 months. Two-stage predictive modeling, integrating microbiota abundances and nutritional profiles, improved predictive capacity (change in Area Under the Curve from 0.58 to 0.64) when assessed at Amplicon Sequence Variant taxonomic resolution.ConclusionWe present longitudinal GM studies in PD patients, showing persistently altered GM profiles suggestive of a reduced butyrogenic production potential. DATs exerted variable GM influences across the short and longer-term. We found that specific GM profiles combined with dietary factors improved prediction of disease progression in PD patients.
Subject
Cognitive Neuroscience,Aging
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献