Author:
Wang Qiyue,Fu Yan,Shao Baiyu,Chang Le,Ren Kang,Chen Zhonglue,Ling Yun
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that negatively affects millions of people. Early detection is of vital importance. As recent researches showed dysarthria level provides good indicators to the computer-assisted diagnosis and remote monitoring of patients at the early stages. It is the goal of this study to develop an automatic detection method based on newest collected Chinese dataset. Unlike English, no agreement was reached on the main features indicating language disorders due to vocal organ dysfunction. Thus, one of our approaches is to classify the speech phonation and articulation with a machine learning-based feature selection model. Based on a relatively big sample, three feature selection algorithms (LASSO, mRMR, Relief-F) were tested to select the vocal features extracted from speech signals collected in a controlled setting, followed by four classifiers (Naïve Bayes, K-Nearest Neighbor, Logistic Regression and Stochastic Gradient Descent) to detect the disorder. The proposed approach shows an accuracy of 75.76%, sensitivity of 82.44%, specificity of 73.15% and precision of 76.57%, indicating the feasibility and promising future for an automatic and unobtrusive detection on Chinese PD. The comparison among the three selection algorithms reveals that LASSO selector has the best performance regardless types of vocal features. The best detection accuracy is obtained by SGD classifier, while the best resulting sensitivity is obtained by LR classifier. More interestingly, articulation features are more representative and indicative than phonation features among all the selection and classifying algorithms. The most prominent articulation features are F1, F2, DDF1, DDF2, BBE and MFCC.
Subject
Cognitive Neuroscience,Aging
Reference51 articles.
1. Articulatory deficits in parkinsonian dysarthria: An acoustic analysis.;Ackermann;J. Neurol. Neurosurg. Psychiatry,1991
2. Acoustic characteristics of vowel sounds in patients with Parkinson disease.;Bang;NeuroRehabilitation,2013
3. Automatic evaluation of parkinson’s speech-acoustic, prosodic and voice related cues;Bocklet;Proceedings of the 14th annual conference of the international speech communication association,2013
4. Suppression of acoustic noise in speech using spectral subtraction.;Boll;IEEE Trans. Acoust. Speech Signal Process.,1979
5. Differential diagnostic patterns of dysarthria.;Darley;J. Speech Hear. Res.,1969
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献