Fish life-history traits predict abundance-occupancy patterns in artificial lakes

Author:

Miranda L. E.

Abstract

Life-history traits of a species have been postulated as a factor in abundance and occupancy patterns. Understanding how traits contribute to the ubiquity and rarity of taxa can facilitate the development of effective conservation policy by establishing a connection between species requirements and resource. The goal was to evaluate fish assemblages in artificial lakes for evidence of the abundance-occupancy patterns reported in natural environments and, if evident, to explore if observed patterns of abundance and occupancy could be attributed to species traits. Fish abundance and occupancy were estimated over 1990–2018 in 22 artificial lakes impounded within the Tennessee River basin, USA. Consistent with reports for many other taxonomic groups in natural environments, there was a positive association amidst 114 fish species between abundance and occupancy in artificial lakes (R2 = 0.78). This result indicates that the fish assemblages that develop in these anthropized environments follow the fundamental abundance-occupancy patterns uncovered in natural environments, despite assemblages having been disfigured by the dramatic rearrangement of habitats brought by impoundment. Moreover, a redundancy analysis focusing mostly on reproductive and habitat traits adequately predicted abundance-occupancy patterns of fish assemblages in artificial lakes (R2 = 0.69). Species abundance-occupancy is influenced by the interplay between life-history traits and habitat availability, even in artificial lakes, and by extension, possibly other artificial ecosystems.

Publisher

Frontiers Media SA

Reference54 articles.

1. “Patterns of colonization in Neotropical reservoirs, and prognoses on aging,”;Agostinho,1999

2. Texas freshwater fish assemblages following three decades of environmental change;Anderson;Southwest Nat.,1995

3. The relationship between abundance and body size in natural animal assemblages;Blackburn;J. Anim. Ecol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3