Numerical simulation of the equatorial plasma bubble: the effect of seeding by the vertical winds and random background noise perturbations

Author:

Zhu Yunzhou,Tang Qiong,Xu Tong,Liu Yi,Zhou Chen,Deng Zhongxin,Zhang Yuqiang,Zhao Zhengyu,Wei Fengsi,Xu Bin,Sun Shuji

Abstract

A wide variety of small-amplitude waves widely exist in the ionosphere and have significant effects on the evolution of equatorial plasma bubbles. In this paper, we simulated equatorial plasma bubbles (EPB) seeded by vertical neutral wind perturbations with wavelengths of 125 km and 250 km, and compared the morphology characteristics of plasma bubble structures with those under random noise perturbations in the background density. The numerical results showed that both vertical winds and random background noise perturbations can contribute to the growth of plasma bubbles, and the perturbations under additional random background noise can promote the growth of the plasma bubble structures faster. Additionally, several processes of the nonlinear behavior of bifurcated EPB structures, including bifurcation, pinching, and small-scale turbulent structures, were successfully obtained. Our simulation captured supersonic flows within the low-density plasma structures characterized by vertical velocities of about 1.5 km/s, which is consistent with experimental studies found in the literature.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3