Do Impulsive Solar-Energetic-Electron (SEE) Events Drive High-Voltage Charging Events on the Nightside of the Moon?

Author:

Borovsky Joseph E.,Delzanno Gian Luca

Abstract

When the Earth’s moon is in the supersonic solar wind, the darkside of the Moon and the lunar plasma wake can be very dangerous charging environments. In the absence of photoelectron emission (dark) and in the absence of cool plasma (wake), the emission or collection of charge to reduce electrical potentials is difficult. Unique extreme charging events may occur during impulsive solar-energetic-electron (SEE) events when the lunar wake is dominated by relativistic electrons, with the potential to charge and differentially charge objects on and above the lunar surface to very-high negative electrical potentials. In this report the geometry of the magnetic connections from the Sun to the lunar nightside are explored; these magnetic connections are the pathways for SEEs from the Sun. Rudimentary charging calculations for objects in the relativistic-electron environment of the lunar wake are performed. To enable these charging calculations, secondary-electron yields for impacts by relativistic electrons are derived. Needed lunar electrical-grounding precautions for SEE events are discussed. Calls are made 1) for future dynamic simulations of the plasma wake in the presence of time-varying SEE-event relativistic electrons and time-varying solar-wind magnetic-field orientations and 2) for future charging calculations in the relativistic-electron wake environment and on the darkside lunar surface.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ISWAT spacecraft surface charging review;Advances in Space Research;2024-08

2. Characteristics of Lunar Surface Electrons Inferred From ARTEMIS Observations: 1. Backscattered Electrons;Journal of Geophysical Research: Planets;2023-10

3. Electrostatic dust remediation for future exploration of the Moon;Acta Astronautica;2023-06

4. References;Extreme Space Weather;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3