Electromagnetic solitons and their stability in relativistic degenerate dense plasmas with two electron species

Author:

Roy Sima,Misra Amar P.

Abstract

The evolution of electromagnetic (EM) solitons due to nonlinear coupling of circularly polarized intense laser pulses with low-frequency electron-acoustic perturbations is studied in relativistic degenerate dense astrophysical plasmas with two groups of electrons: a sparse population of classical relativistic electrons and a dense population of relativistic degenerate electron gas. Different forms of localized stationary solutions are obtained and their properties are analyzed. Using the Vakhitov-Kolokolov stability criterion, the conditions for the existence and stability of a moving EM soliton are also studied. It is noted that the stable and unstable regions shift around the plane of soliton eigenfrequency and the soliton velocity due to the effects of relativistic degeneracy, the fraction of classical to degenerate electrons and the EM wave frequency. Furthermore, while the standing solitons exhibit stable profiles for a longer time, the moving solitons, however, can be stable or unstable depending on the degree of electron degeneracy, the soliton eigenfrequency and the soliton velocity. The latter with an enhanced value can eventually lead to a soliton collapse. The results should be useful for understanding the formation of solitons in the coupling of highly intense laser pulses with slow response of degenerate dense plasmas in the next generation laser-plasma interaction experiments as well as the novel features of x-ray and γ-ray pulses that originate from compact astrophysical objects.

Funder

Science and Engineering Research Board

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3