Grotifer: A new electric field instrument design to address the need for highly accurate three-component electric field measurements

Author:

Lejosne Solène,Auslander David M.,Bonnell John W.,Klumpar David M.,Mozer Forrest S.,Pankow David H.,Sample John G.

Abstract

Accurate knowledge of the full, three-dimensional electric field vector is of fundamental importance in understanding electrodynamics of a vast variety of space plasmas. However, heliophysics research still lacks access to the reliable parallel electric field measurements required to close many significant science questions. This uncertainty represents a significant barrier to progress in the field. The only way to close this major observational gap is a profound change in electric field instrument design. A new electric field instrument called Grotifer is now being designed to address the need for highly accurate three-dimensional electric field measurements while enabling lower cost missions and constellation missions in deep space. Grotifer (Giant rotifer) is a reference to the rotifer, also known as the “wheel animalcule.” Similarly, Grotifer consists of mounting detectors on two rotating plates, orthogonal to each other, on a non-rotating central body. The two rotating plates provide continuous high-accuracy three-dimensional measurements of both electric fields and magnetic fields. The Grotifer design leverages more than 50 years of expertise in delivering highly accurate spin plane electric field measurements, while overcoming inaccuracies generated by spin axis electric field measurements. Our current efforts focus on designing Grotifer as a SmallSat (27U CubeSat). That said, Grotifer could also become part of the payload on a much larger platform. In the future, one could imagine fleets of Grotifers studying electrodynamics at many points, facilitating differentiation between spatial and temporal dynamics. Plasma detectors could also be added to the rotating plates to cover the full phase space better than is done on spinning spacecraft, leading to more complete correlation studies of the fields and plasmas.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3