Author:
Burkholder Brandon L.,Chen Li-Jen,Sorathia Kareem,Sciola Anthony,Merkin Slava,Trattner Karlheinz J.,Gershman Daniel,Ma Xuanye,Connor Hyunju
Abstract
High-resolution global magnetohydrodynamics (MHD) simulations include both meso- and global-scale processes occurring at the magnetopause, which interact to determine the time-dependent orientation of the day-side x-line (DXL). This study demonstrates that the global orientation of the DXL in GAMERA global MHD simulations varies on a time scale of minutes during steady southward interplanetary magnetic field conditions. This behavior manifests in observational data when reconnection outflows indicate that the direction to the x-line is opposite to the prediction from a steady-state model of the reconnection location. Because steady-state models of the DXL do not capture dynamics that are independent of solar wind variations, particularly surface waves and flux transfer events, they represent a time-averaged state of the system.
Subject
Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献