On particle scattering in Gross-Pitaevskii theory and implications for dark matter halos

Author:

Rindler-Daller Tanja

Abstract

Bose-Einstein-condensed dark matter (BEC-DM), also called scalar field dark matter (SFDM), has become a popular alternative to the standard, collisionless cold dark matter (CDM) model, due to its long-held potential to resolve the small-scale crisis of CDM. Halos made of BEC-DM have been modelled using the Gross-Pitaevskii (GP) equation coupled to the Poisson equation; the so-called GPP equations of motion. These equations are based on fundamental microphysical conditions that need to be fulfilled in order for the equations to be valid in the first place, related to the diluteness of the DM gas and the nature of the particle scattering model. We use these conditions in order to derive the implications for the BEC-DM parameters, the 2-particle self-interaction coupling strength g and the particle mass m. We compare the derived bounds with the constraint that results from the assumption of virial equilibrium of the central cores of halos, deriving a relationship that connects g and m. We find that the GPP conditions are greatly fulfilled, for BEC-DM particle masses of interest, if such models also obey the virial condition that turns out to be the strongest constraint. We also derive the implications for the elastic scattering cross section (per particle mass) in BEC-DM halos, based on the scattering model of GPP, and find a huge range of possible values, depending on the self-interaction regime. We put our results into context to recent literature which predicts sub-kpc core size in BEC-DM halos.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3