Coronal seismology by slow waves in non-adiabatic conditions

Author:

Kolotkov Dmitrii Y.

Abstract

Slow magnetoacoustic waves represent an important tool for probing the solar coronal plasma. The majority of seismological methods with slow waves are based on a weakly non-adiabatic approach, which assumes the coronal energy transport has only weak effects on the wave dynamics. Despite it significantly simplifies the application of coronal seismology by slow waves, this assumption omits a number of important and confidently observed effects and thus puts strong limitations on the reliability of seismological estimations. We quantitatively assess the applicability of the weak thermal conduction theory to coronal seismology by slow waves. We numerically model the linear standing slow wave in a 1D coronal loop, with field-aligned thermal conduction κ as a free parameter and no restrictions on its efficiency. The time variations of the perturbed plasma parameters, obtained numerically with full conductivity, are treated as potential observables and analysed with the standard data processing techniques. The slow wave oscillation period is found to increase with κ by about 30%, indicating the corresponding modification in the effective wave speed, which is missing from the weak conduction theory. Phase shifts between plasma temperature and density perturbations are found to be well consistent with the approximate weakly conductive solution for all considered values of κ. In contrast, the comparison of the numerically obtained ratio of temperature and density perturbation amplitudes with the weak theory revealed relative errors up to 30–40%. We use these parameters to measure the effective adiabatic index of the coronal plasma directly as the ratio of the effective slow wave speed to the standard sound speed and in the polytropic assumption, which is found to be justified in a weakly conductive regime only, with relative errors up to 14% otherwise. The damping of the initial perturbation is found to be of a non-exponential form during the first cycle of oscillation, which could be considered as an indirect signature of entropy waves in the corona, also not described by weak conduction theory. The performed analysis and obtained results offer a more robust scheme of coronal seismology by slow waves, with reasonable simplifications and without the loss of accuracy.

Funder

Science and Technology Facilities Council

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference45 articles.

1. Magnetohydrodynamic waves in open coronal structures;Banerjee;Space Sci. Rev.,2021

2. Transport processes in a plasma;Braginskii;Rev. Plasma Phys.,1965

3. Comparison of damped oscillations in solar and stellar X-ray flares;Cho;Astrophys. J.,2016

4. Legolas: A modern tool for magnetohydrodynamic spectroscopy;Claes;Astrophys. J. Suppl. Ser.,2020

5. The damping of slow MHD waves in solar coronal magnetic fields;De Moortel;Astron. Astrophys.,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3