Impacts of Kelvin-Helmholtz billow formation on GNSS radio occultation measurements of sporadic-E

Author:

Knisely Andrew J.,Emmons Daniel J.

Abstract

Global Navigation Satellite System (GNSS) Radio Occultation (RO) has shown great promise for monitoring sporadic-E layers. However, extracting sporadic-E information from RO signals remains a difficult task due to the many unknown parameters such as length, intensity, vertical thickness, and small-scale structure or turbulence. To further our understanding of sporadic-E turbulence, we investigate the power spectra of sporadic-E layers during Kelvin-Helmholtz billow formation. Additionally, RO signals traversing the billows are simulated to analyze the impact on both amplitude and phase. From this, we find that the horizontal power spectrum is generally steeper in sporadic-E layers without billow formation, and the spectrum flattens as small-scale structures develop. Additionally, the typical “U”-shaped RO amplitude profiles produced by sporadic-E layers become asymmetric and less defined as the billows form and progress, showing that a single sporadic-E layer can produce a variety of RO signatures as it evolves over time. Ultimately, these results provide valuable insight for both modeling RO signals through sporadic-E layers and inverting RO data to extract information about the layers.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3