Author:
Nishimura Yukitoshi,Dyer Alan,Kangas Lauri,Donovan Eric,Angelopoulos Vassilis
Abstract
This paper reviews key properties and major unsolved problems about Strong Thermal Emission Velocity Enhancement (STEVE) and the picket fence. We first introduce the basic characteristics of STEVE and historical observations of STEVE-like emissions, particularly the case on 11 September 1891. Then, we discuss major open questions about STEVE: 1) Why does STEVE preferentially occur in equinoxes? 2) How do the solar wind and storm/substorm conditions control STEVE? 3) Why is STEVE rare, despite that STEVE does not seem to require extreme driving conditions? 4) What are the multi-scale structures of STEVE? 5) What mechanisms determine the properties of the picket fence? 6) What are the chemistry and emission mechanisms of STEVE? 7) What are the impacts of STEVE on the ionosphere−thermosphere system? Also, 8) what is the relation between STEVE, stable auroral red (SAR) arcs, and the subauroral proton aurora? These issues largely concern how STEVE is created as a unique mode of response of the subauroral magnetosphere−ionosphere−thermosphere coupling system. STEVE, SAR arcs, and proton auroras, the three major types of subauroral emissions, require energetic particle injections to the pre-midnight inner magnetosphere and interaction with cold plasma. However, it is not understood why they occur at different times and why they can co-exist and transition from one to another. Strong electron injections into the pre-midnight sector are suggested to be important for driving intense subauroral ion drifts (SAID). A system-level understanding of how the magnetosphere creates distinct injection features, drives subauroral flows, and disturbs the thermosphere to create optical emissions is required to address the key questions about STEVE. The ionosphere−thermosphere modeling that considers the extreme velocity and heating should be conducted to answer what chemical and dynamical processes occur and how much the STEVE luminosity can be explained. Citizen scientist photographs and scientific instruments reveal the evolution of fine-scale structures of STEVE and their connection to the picket fence. Photographs also show the undulation of STEVE and the localized picket fence. High-resolution observations are required to resolve fine-scale structures of STEVE and the picket fence, and such observations are important to understand underlying processes in the ionosphere and thermosphere.
Funder
National Aeronautics and Space Administration
Division of Atmospheric and Geospace Sciences
Air Force Office of Scientific Research
Canada Foundation for Innovation
Subject
Astronomy and Astrophysics
Reference46 articles.
1. A pas de Deux with aurora and steve;Anderson;J. R. Astronomical Soc. Can.,2021
2. The space Physics environment data analysis system (SPEDAS);Angelopoulos;Space Sci. Rev.,2019
3. The vertical distribution of the optical emissions of a Steve and Picket Fence event;Archer;Geophys. Res. Lett.,2019
4. Steve: The optical signature of intense subauroral ion drifts;Archer;Geophys. Res. Lett.,2019
5. Historical observations of STEVE;Bailey;Observatory,2018
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献