PINE-RT: An operational real-time plasmasphere model

Author:

Bianco Stefano,Haas Bernhard,Shprits Yuri Y.

Abstract

The plasmasphere is a region of cold and dense plasma around the Earth, corotating with the Earth. Its plasma density is very dynamic under the influence of the solar wind and it influences several processes such as the GPS navigation, the surface charging of the satellites and the propagation and growth of plasma waves. In this manuscript, we present a new machine-learning model of the equatorial plasma density depending only on the Kp index and the solar-wind properties at the L1 Lagrange point. We call this model PINE-RT as it has been inspired by the recently-introduced PINE (Plasma density in the Inner magnetosphere Neural network-based Empirical) model and it has been developed to run in real-time (RT) in the context of the PAGER project. This project is an EU Horizon 2020 project aiming at forecasting the threats of satellite charging as a consequence of the solar activity 1–2 days ahead. In PAGER, the Kp index and the solar-wind properties at L1 are the inputs which are made available for the plasmasphere modeling. We report here the detailed derivation of the PINE-RT model and its validation and comparison with two state-of-the-art machine-learning and physics-based models. The model is currently running in real-time and its predictions are publicly available.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3