Accuracy and Reliability in the Simulation of Vibrational Spectra: A Comprehensive Benchmark of Energies and Intensities Issuing From Generalized Vibrational Perturbation Theory to Second Order (GVPT2)

Author:

Yang Qin,Mendolicchio Marco,Barone Vincenzo,Bloino Julien

Abstract

Vibrational spectroscopy represents an active frontier for the identification and characterization of molecular species in the context of astrochemistry and astrobiology. As new missions will provide more data over broader ranges and at higher resolution, especially in the infrared region, which could be complemented with new spectrometers in the future, support from laboratory experiments and theory is crucial. In particular, computational spectroscopy is playing an increasing role in deepening our understanding of the origin and nature of the observed bands in extreme conditions characterizing the interstellar medium or some planetary atmospheres, not easily reproducible on Earth. In this connection, the best compromise between reliability, feasibility and ease of interpretation is still a matter of concern due to the interplay of several factors in determining the final spectral outcome, with larger molecular systems and non-covalent complexes further exacerbating the dichotomy between accuracy and computational cost. In this context, second-order vibrational perturbation theory (VPT2) together with density functional theory (DFT) has become particularly appealing. The well-known problem of the reliability of exchange-correlation functionals, coupled with the treatment of resonances in VPT2, represents a challenge for the determination of standardized or “black-box” protocols, despite successful examples in the literature. With the aim of getting a clear picture of the achievable accuracy and reliability of DFT-based VPT2 calculations, a multi-step study will be carried out here. Beyond the definition of the functional, the impact of the basis set and the influence of the resonance treatment in VPT2 will be analyzed. For a better understanding of the computational aspects and the results, a short summary of vibrational perturbation theory and the overall treatment of resonances for both energies and intensities will be given. The first part of the benchmark will focus on small molecules, for which very accurate experimental and theoretical data are available, to investigate electronic structure calculation methods. Beyond the reliability of energies, widely used for such systems, the issue of intensities will also be investigated in detail. The best performing electronic structure methods will then be used to treat larger molecular systems, with more complex topologies and resonance patterns.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3