Gas-Phase Reactivity of OH Radicals With Ammonia (NH3) and Methylamine (CH3NH2) at Around 22 K

Author:

González Daniel,Ballesteros Bernabé,Canosa André,Albaladejo José,Jiménez Elena

Abstract

Interstellar molecules containing N atoms, such as ammonia (NH3) and methylamine (CH3NH2), could be potential precursors of amino acids like the simplest one, glycine (NH2CH2COOH). The gas-phase reactivity of these N-bearing species with OH radicals, ubiquitous in the interstellar medium, is not known at temperatures of cold dark molecular clouds. In this work, we present the first kinetic study of these OH-reactions at around 22 K and different gas densities [(3.4–16.7) × 1016 cm−3] in helium. The obtained rate coefficients, with ± 2σ uncertainties, can be included in pure gas-phase or gas-grain astrochemical models to interpret the observed abundances of NH3 and CH3NH2. We observed an increase of k1 and k2 with respect to those previously measured by others at the lowest temperatures for which rate coefficients are presently available: 230 and 299 K, respectively. This increase is about 380 times for NH3 and 20 times for CH3NH2. Although the OH + NH3 reaction is included in astrochemical kinetic databases, the recommended temperature dependence for k1 is based on kinetic studies at temperatures above 200 K. However, the OH + CH3NH2 reaction is not included in astrochemical networks. The observed increase in k1 at ca. 22 K does not significantly change the abundance of NH3 in a typical cold dark interstellar cloud. However, the inclusion of k2 at ca. 22 K, not considered in astrochemical networks, indicates that the contribution of this destruction route for CH3NH2 is not negligible, accounting for 1/3 of the assumed main depletion route (reaction with HCO+) in this IS environment.k1(OH+NH3)=(2.7±0.1)×1011cm3s-1k2(OH+CH3NH2)=(3.9±0.1)×1010cm3s-1

Funder

Ministerio de Ciencia e Innovación

Junta de Comunidades de Castilla-La Mancha

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3