Possible Advantages of a Twin Spacecraft Heliospheric Mission at the Sun-Earth Lagrangian Points L4 and L5

Author:

Bemporad A.

Abstract

After the launch of STEREO twin spacecraft, and most recently of Solar Orbiter and Parker Solar Probe spacecraft, the next mission that will explore Sun-Earth interactions and how the Sun modulates the Heliosphere will be the “Lagrange” mission, which will consist of two satellites placed in orbit around L1 and L5 Sun-Earth Lagrangian points. Despite the significant novelties that will be provided by such a double vantage point, there will be also missing information, that are briefly discussed here. For future heliospheric missions, an alternative advantageous approach that has not been considered so far would be to place two twin spacecraft not in L1 and L5, but in L4 and L5 Lagrangian points. If these two spacecraft will be equipped with in situ instruments, and also remote sensing instruments measuring not only photospheric but also coronal magnetic fields, significant advancing will be possible. In particular, data provided by such a twin mission will allow to follow the evolution of magnetic fields from inside the Sun (with stereoscopic helioseismology), to its surface (with classical photospheric magnetometers), and its atmosphere (with spectro-polarimeters); this will provide a tremendous improvement in our physical understanding of solar activity. Moreover, the L4-L5 twin satellites will take different interesting configurations, such as relative quadrature, and quasi-quadrature with the Earth, providing a baseline for monitoring the Sun-to-Earth propagation of solar disturbances.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference53 articles.

1. Solar flare prediction using advanced feature extraction, machine learning, and feature selection;Ahmed;Sol. Phys.,2013

2. Metis: the solar orbiter visible light and ultraviolet coronal imager;Antonucci;Astron. Astrophys.,2020

3. Fast solar image classification using deep learning and its importance for automation in solar physics;Armstrong;Sol. Phys.,2019

4. A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. III. the free energy;Aschwanden;Sol. Phys.,2013

5. HeMISE (Helio-Magnetism Investigation from the Sun to Earth): a twin spacecraft mission at the Sun-Earth Lagrangian points L4 and L5;Bemporad,2014

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3