A feasibility study of 4-D tomography of soft X-ray magnetosheath emissivities using multi-spacecraft measurements

Author:

Cucho-Padin Gonzalo,Connor Hyunju,Jung Jaewoong,Shoemaker Michael,Murphy Kyle,Sibeck David,Norberg Johannes,Rojas Enrique

Abstract

Upcoming heliophysics missions utilize state-of-the-art wide field-of-view (FOV) imaging technology to measure and investigate the space plasma environment on a global scale. At Earth, remote sensing of soft X-ray emissions, which are generated via the charge exchange interaction between heavy solar wind ions and exospheric neutral atoms, is a promising means to investigate the global magnetosheath structure, its response to varying solar wind conditions, and the spatiotemporal properties of the dayside magnetic reconnection. Data analysis techniques such as optical tomography can provide additional structural and time-varying information from the observed target and thus enhance the mission’s scientific return. In this work, we simulate multiple and simultaneous observations of the dayside magnetosphere using soft X-ray imagers located at long-distance vantage points to reconstruct the time-dependent, three-dimensional (3-D) structure of the magnetosheath using a dynamic tomographic approach. The OpenGCCM MHD model is used to simulate the time-varying response of the magnetosheath to solar wind conditions and, subsequently, generate synthetic soft X-ray images from multiple spacecraft vantage points separated along a common orbit. A detailed analysis is then performed to identify the nominal set of spacecraft that produces the highest fidelity tomographic reconstruction of the magnetopause. This work aims to (i) demonstrate, for the first time, the use of dynamic tomography to retrieve the time-varying magnetosheath structure and (ii) identify a nominal mission design for multi-spacecraft configurations aiming for optical tomography.

Publisher

Frontiers Media SA

Reference35 articles.

1. Inward motion of the magnetopause before a substorm;Aubry;J. Geophys. Res. (1896-1977),1970

2. Smile definition study report (red book);Branduardi-Raymont,2018

3. Dynamic three-dimensional tomography of the solar corona;Butala;Sol. Phys.,2010

4. Magnetopause surface reconstruction from tangent vector observations;Collier;J. Geophys. Res. Space Phys.,2018

5. Exospheric neutral hydrogen density at the nominal 10 RE subsolar point deduced from xmm‐Newton X‐ray observations;Connor;J. Geophys. Res. Space Phys.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3