Star-exoplanet interactions: A growing interdisciplinary field in heliophysics

Author:

Garcia-Sage K.,Farrish A. O.,Airapetian V. S.,Alexander D.,Cohen O.,Domagal-Goldman S.,Dong C.,Gronoff G.,Halford A. J.,Lazio J.,Luhmann J. G.,Schwieterman E.,Sciola A.,Segura A.,Toffoletto F.,Vievering J.,Ahmed Md Redyan,Bali K.,Rau G.

Abstract

Traditionally, heliophysics is characterized as the study of the near-Earth space environment, where plasmas and neutral gases originating from the Earth, the Sun, and other solar system bodies interact in ways that are detectable only through in-situ or close-range (usually within ∼10 AU) remote sensing. As a result, heliophysics has data from the space environment around a handful of solar system objects, in particular the Sun and Earth. Comparatively, astrophysics has data from an extensive array of objects, but is more limited in temporal, spatial, and wavelength information from any individual object. Thus, our understanding of planetary space environments as a complex, multi-dimensional network of specific interacting systems may in the past have seemed to have little to do with the highly diverse space environments detected through astrophysical methods. Recent technological advances have begun to bridge this divide. Exoplanetary studies are opening up avenues to study planetary environments beyond our solar system, with missions like Kepler, TESS, and JWST, along with increasing capabilities of ground-based observations. At the same time, heliophysics studies are pushing beyond the boundaries of our heliosphere with Voyager, IBEX, and the future IMAP mission.The interdisciplinary field of star-exoplanet interactions is a critical, growing area of study that enriches heliophysics. A multidisciplinary approach to heliophysics enables us to better understand universal processes that operate in diverse environments, as well as the evolution of our solar system and extreme space weather. The expertise, data, theory, and modeling tools developed by heliophysicists are crucial in understanding the space environments of exoplanets, their host stars, and their potential habitability. The mutual benefit that heliophysics and exoplanetary studies offer each other depends on strong, continuing solar system-focused and Earth-focused heliophysics studies. The heliophysics discipline requires new targeted funding to support inter-divisional opportunities, including small multi-disciplinary research projects, large collaborative research teams, and observations targeting the heliophysics of planetary and exoplanet systems. Here we discuss areas of heliophysics-relevant exoplanetary research, observational opportunities and challenges, and ways to promote the inclusion of heliophysics within the wider exoplanetary community.

Funder

Science Mission Directorate

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3