Drift phase resolved diffusive radiation belt model: 1. Theoretical framework

Author:

Lejosne Solène,Albert Jay M.

Abstract

Most physics-based models provide a coarse three-dimensional representation of radiation belt dynamics at low time resolution, of the order of a few drift periods. The description of the effect of trapped particle transport on radiation belt intensity is based on the random phase approximation, and it is in one dimension only: the third adiabatic invariant coordinate, akin to a phase-averaged radial distance. This means that these radiation belt models do not resolve the drift phase or, equivalently, the magnetic local time. Yet, in situ measurements suggest that radiation belt intensity frequently depends on magnetic local time, at least transiently, such as during active times. To include processes generating azimuthal variations in trapped particle fluxes and to quantify their relative importance in radiation belt energization, an improvement in the spatiotemporal resolution of the radiation belt models is required. The objective of this study is to pave the way for a new generation of diffusive radiation belt models capable of retaining drift phase information. Specifically, we highlight a two-dimensional equation for the effects of trapped particle transport on radiation belt intensity. With a theoretical framework that goes beyond the radial diffusion paradigm, the effects of trapped particle bulk motion, as well as diffusion, are quantified in terms of Euler potentials, α,β, quantities akin to the radial and azimuthal directions. This work provides the theoretical foundations underlying the drift phase resolved transport equation for radiation belt dynamics. It also brings forward the concept of azimuthal diffusion as a phase-mixing agent.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3