The unsolved problem of solar-wind turbulence

Author:

Smith Charles W.,Vasquez Bernard J.

Abstract

The solar wind forms the largest wind tunnel for plasma and magnetofluid turbulence that is accessible to Earth. It evolves from what is thought to be a turbulent source that continues to drive nonlinear turbulent dynamics as it expands outward via large-scale, energy-containing wind shear and shocks. In the outer heliosphere, once the gradients in the flow have coalesced and they no longer provide an adequate source for the turbulence, the excitation of wave energy by the injection of interstellar pickup ions becomes the dominant source of energy that continues to drive the turbulence. While there are established formalisms for the determination of the strength of the turbulence and the evolution of the turbulent spectra is well-established, the actual nonlinear dynamics that are responsible for its formation and evolution remain unresolved and the subject of considerable debate. We examine the evidence and attempt to illuminate the various theories while demonstrating what is needed to resolve the debates and bring the subject of plasma turbulence into a new level of understanding.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3