Changes in membrane fatty acids of a halo-psychrophile exposed to magnesium perchlorate and low temperatures: Implications for Mars habitability

Author:

García-Descalzo Laura,Lezcano María Ángeles,Carrizo Daniel,Fairén Alberto G.

Abstract

The presence of perchlorate salts in aqueous solutions bears two opposite effects on habitability. On the one hand, perchlorate salts trigger a decrease in the freezing point of the aqueous solutions, resulting in stable aqueous solutions at subzero temperatures, thereby widening the habitable conditions for potential microbial life. On the other hand, the presence of perchlorates in solution imposes a significant osmotic stress that compromises the integrity of microbial cell membranes, thereby restricting the habitable conditions in the same aqueous environment. Here we investigated the survivability and the changes in the composition of membrane fatty acids (FAs) of the bacterium Rhodococcus sp. JG-3 cells under warm (20°C), cold (4°C), and subzero temperatures (−10°C and −16°C), and in the presence (8 wt% and 16 wt%) and absence of magnesium perchlorate (Mg(ClO4)2). Bacterial cell survivability decreased with decreasing temperature and presence of magnesium perchlorate. However, Rhodococcus sp. JG-3 was able to tolerate up to 8 wt% Mg(ClO4)2 at −16°C. The presence of magnesium perchlorate in the medium decreased the concentration of total FAs, likely due to a destabilization of the molecules by the chaotropic effect of the perchlorate anion. At the maximum stress (both subzero temperatures and 16 wt% magnesium perchlorate), the composition of FAs changed, i.e., Rhodococcus sp. JG-3 cells increased the relative abundance of saturated FAs (SFAs) over the unsaturated (UFAs) or branched (BFAs). These changes in the proportion of FAs types may be a physiological response during cooling, aimed to improve lipid membrane stability. Interestingly, the composition and relative abundance of fatty acid types (i.e., SFAs, UFAs and BFAs) of Rhodococcus sp. JG-3 when simultaneously exposed to subzero temperatures and 16 wt% magnesium perchlorate was similar to that following freezing stress alone, suggesting that either both conditions triggered a similar response or that one response dominated over the other. Our findings contribute to understand the survivability and adaptation of extremophilic microorganisms under polyextreme conditions, such as those existing in the Martian subsurface today and/or in the past, which include the documented presence of magnesium perchlorate salts in ancient sediments and global cold temperatures.

Funder

Consejo Superior de Investigaciones Científicas

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3