The dynamic universe: realizing the potential of classical time domain and multimessenger astrophysics

Author:

Howell Steve B.,Howell D. Andrew,Street R. A.,Soares-Furtado Melinda,Jackson Brian,Greene Thomas P.

Abstract

In parallel with the multi-messenger revolution, major advances in time-domain astronomy across multiple science disciplines relevant to astrophysics are becoming more urgent to address. Aside from electromagnetic observations of gravitational wave events and explosive counterparts, there are a number of “classical” astrophysical areas that require new thinking for proper exploration in the time domain. How NASA, NSF, ESA, and ESO consider the 2020 USA Decadal Survey within the astronomy community, as well as the worldwide call to support and expand time domain and multi-messenger astrophysics, it is crucial that all areas of astrophysics, including stellar, galactic, Solar System, and exoplanetary science participate in the discussion, and that it not be made into an exclusive preserve of cosmological, high-energy, explosive and transient science. Time domain astronomy is used to explore many aspects of astrophysics–particularly concerning ground- and space-based mission science goals of exploring how the Universe works, understanding how did we get here, and are we alone. Time domain studies are already built into the core operations of many currently operating and future space telescopes (e.g., Roman, PLATO) as well as current and planned large areal ground-based surveys (e.g., Rubin). Time-domain observations designed for one scientific purpose, also lead to great discoveries in many other science areas. The recent advent of user-friendly hardware, software, observational approaches, and online data infrastructure has also helped make time domain observations especially suitable and appealing for citizen science projects. We provide a review of the current state of TDAMM alerts and observational protocols, revealing a wide array of software and applications, much of which is incompatible. Any conversation regarding TDAMM astrophysics should include all aspects of the field, including those aspects seen as classical applications.

Funder

Ames Research Center

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3