The Impact of Turbulence on the Ionosphere and Magnetosphere

Author:

Guio Patrick,Pécseli Hans L.

Abstract

An important property associated with turbulence in plasmas and fluids is anomalous transport. Plasma, being a good conductor, can in addition be affected by turbulence causing an anomalous resistivity that can significantly exceed its classical counterpart. While turbulent transport may be adequately described in configuration space, some aspects of the anomalous resistivity are best accounted for in phase space. Kinetic phenomena like electron and ion phase space vortices can thus act as obstacles for the free flow of slow charged particles. Plasma instabilities and large amplitude plasma waves are candidates for contributions to the anomalous resistivity by generating such structures. Langmuir waves can be relevant, but also others, such as upper- as well as lower-hybrid waves in magnetized plasmas. Often these anomalous resistivity effects can be small, but due to the large spatial and temporal scales involved in space plasmas, planetary ionosphere and magnetosphere in particular, even such moderate effects can be important. This mini-review is discussing elements of the description of plasma turbulence with particular attention to wave phenomena that contribute to anomalous resistivity and diffusion. Turbulence effects can have relevance for space weather phenomena as well, where ground based and airborne activities relying on for instance Global Positioning and Global Navigation Satellite Systems are influenced by plasma conditions in geospace.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3