An event of extreme relativistic and ultra-relativistic electron enhancements following the arrival of consecutive corotating interaction regions: Coordinated observations by Van Allen Probes, Arase, THEMIS and Galileo satellites

Author:

Nasi Afroditi,Katsavrias Christos,Daglis Ioannis A.,Sandberg Ingmar,Aminalragia-Giamini Sigiava,Li Wen,Miyoshi Yoshizumi,Evans Hugh,Mitani Takefumi,Matsuoka Ayako,Shinohara Iku,Takashima Takeshi,Hori Tomoaki,Balasis Georgios

Abstract

During July to October of 2019, a sequence of isolated Corotating Interaction Regions (CIRs) impacted the magnetosphere, for four consecutive solar rotations, without any interposed Interplanetary Coronal Mass Ejections. Even though the series of CIRs resulted in relatively weak geomagnetic storms, the net effect of the outer radiation belt during each disturbance was different, depending on the electron energy. During the August-September CIR group, significant multi-MeV electron enhancements occurred, up to ultra-relativistic energies of 9.9 MeV in the heart of the outer Van Allen radiation belt. These characteristics deemed this time period a fine case for studying the different electron acceleration mechanisms. In order to do this, we exploited coordinated data from the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms Mission (THEMIS), Arase and Galileo satellites, covering seed, relativistic and ultra-relativistic electron populations, investigating their Phase Space Density (PSD) profile dependence on the values of the second adiabatic invariant K, ranging from near-equatorial to off equatorial mirroring populations. Our results indicate that different acceleration mechanisms took place for different electron energies. The PSD profiles were dependent not only on the μ value, but also on the K value, with higher K values corresponding to more pronounced local acceleration by chorus waves. The 9.9 MeV electrons were enhanced prior to the 7.7 MeV, indicating that different mechanisms took effect on different populations. Finally, all ultra-relativistic enhancements took place below geosynchronous orbit, emphasizing the need for more Medium Earth Orbit (MEO) missions.

Funder

Horizon 2020

European Space Agency

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3