Solved and unsolved riddles about low-latitude daytime valley region plasma waves and 150-km echoes

Author:

Chau J. L.,Longley W. J.,Reyes P. M.,Pedatella N. M.,Otsuka Y.,Stolle C.,Liu H.,England S. L.,Vierinen J. P.,Milla M. A.,Hysell D. L.,Oppenheim M. M.,Patra A.,Lehmacher G.,Kudeki E.

Abstract

The Earth’s atmosphere near both the geographic and magnetic equators and at altitudes between 120 and 200 km is called the low-latitude valley region (LLVR) and is among the least understood regions of the ionosphere/thermosphere due to its complex interplay of neutral dynamics, electrodynamics, and photochemistry. Radar studies of the region have revealed puzzling daytime echoes scattered from between 130 and 170 km in altitude. The echoes are quasi-periodic and are observed in solar-zenith-angle dependent layers. Populations with two distinct types of spectral features are observed. A number of radars have shown scattering cross-sections with different seasonal and probing-frequency dependencies. The sources and configurations of the so-called 150-km echoes and the related irregularities have been long-standing riddles for which some solutions are finally starting to emerge as will be described in this review paper. Although the 150-km echoes were discovered in the early 1960s, their practical significance and implications were not broadly recognized until the early 1990s, and no compelling explanations of their generation mechanisms and observed features emerged until about a decade ago. Now, more rapid progress is being made thanks to a multi-disciplinary team effort described here and recent developments in kinetic simulations and theory: 18 of 27 riddles to be described in this paper stand solved (and a few more partially solved) at this point in time. The source of the irregularities is no longer a puzzle as compelling evidence has emerged from simulations and theory, presented since 2016 that they are being caused by photoelectrons driving an upper hybrid plasma instability process. Another resolved riddle concerns the persistent gaps observed between the 150-km scattering layers—we now understand that they are likely to be the result of enhanced thermal Landau damping of the upper hybrid instability process at upper hybrid frequencies matching the harmonics of the electron gyrofrequency. The remaining unsolved riddles, e.g., minute-scale variability, multi-frequency dependence, to name a few, are still being explored observationally and theoretically—they are most likely unidentified consequences of interplay between plasma physics, photochemistry, and lower atmospheric dynamic processes governing the LLVR.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3