Comprehensive analysis of the ionospheric response to the largest geomagnetic storms from solar cycle 24 over Europe

Author:

Berényi K. A.,Heilig B.,Urbář J.,Kouba D.,Kis Á.,Barta V.

Abstract

A multi-instrumental analysis of the meridional ionospheric response is presented over Europe during the two largest ICME-driven geomagnetic storms of solar cycle #24 maximum. Data from 5 European digisonde stations, ground-based Global Navigation Satellite System, Total Electron Content (GNSS TEC), the ratio of the TEC difference (rTEC), as well as Swarm and Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite observations have been used for the investigation of selected intervals (11–17 November, 2012, and 16–25 March, 2015). The storm evolution is monitored by digisonde foF2 critical frequency (related to the maximum electron density of F2-layer) and GNSS TEC data. Moreover, Global Ultraviolet Imager (GUVI) measurements from the TIMED satellite are used to investigate the changes in the thermospheric O/N2 ratio. Our main focus was on the main phase of the geomagnetic storms, when during the nighttime hours extremely depleted plasma was detected. The extreme depletion is observed in foF2, TEC and rTEC, which is found to be directly connected to the equatorward motion of the midlatitude ionospheric trough (MIT) on the nightside. We demonstrate a method (beside the existing ones) which allows the monitoring of the storm-time evolution of the disturbances (e.g., MIT, SAPS, SED) in the thermosphere-ionosphere-plasmasphere system by the combined analysis of the worldwide digisonde system data (with the drift measurements and the ionospheric layer parameters with 5–15 min cadence), with rTEC and GNSS TEC data, and with the satellite data like Swarm, TIMED/GUVI.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3