Implementation of an automated process for Limnospira indica harvesting and culture medium recycling for space applications

Author:

Tallec Jordan,Vandermies Marie,Coene Céline,Lamaze-Lefebvre Brigitte,Demey Dries,Frappart Matthieu,Couallier Estelle

Abstract

Future long-term space exploration missions require the implementation of circular life support systems for the supply of water, oxygen and food from mission wastes. Therefore, separation systems dealing with multi-phasic streams need to be addressed. The BioHarvest (BHV) study focused on solid/liquid separation in space with the aim to demonstrate the continuous separation and harvesting of the cyanobacterium Limnospira indica from its culture broth under axenic conditions. The cyanobacterium biomass is intended to be used for further food processing while the broth free of organic matter and resupplied with nutrients should be directly recycled into the photobioreactor (PBR). In this study, an automated breadboard model based on a two-step process was built. First, a Biomass Harvesting Unit (BHU) separates the biomass produced in the PBR from the culture medium with dead-end filtration. Second, the Medium Filtration Unit (MFU) further treats the culture medium to retain the dissolved organic compounds using crossflow filtration. The performances of BHU and MHU met the requirements in batch mode and in short continuous mode: the BHU was able to retain all the biomass and the MFU could retain more than 90% of organic matter while being permeable to nutrients. The productivity of the MFU was also very good, with a high permeation flux allowing treating the targeted 80 L of culture per day. However, continuous operation of the BHV technology could not be achieved in the long term due to biomass accumulation as a sticky cake with a high specific resistance on the BHU filter, despite backwashing cycles and intense vibrations. Future work shall therefore focus on this critical step, to improve process performance by preventing fouling of the filter sheets.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3