Study on tiered storage algorithm based on heat correlation of astronomical data

Author:

Ye Xin-Chen,Zhang Hai-Long,Wang Jie,Zhang Ya-Zhou,Du Xu,Wu Han

Abstract

With the surge in astronomical data volume, modern astronomical research faces significant challenges in data storage, processing, and access. The I/O bottleneck issue in astronomical data processing is particularly prominent, limiting the efficiency of data processing. To address this issue, this paper proposes a tiered storage algorithm based on the access characteristics of astronomical data. The C4.5 decision tree algorithm is employed as the foundation to implement an astronomical data access correlation algorithm. Additionally, a data copy migration strategy is designed based on tiered storage technology to achieve efficient data access. Preprocessing tests were conducted on 418GB NSRT (Nanshan Radio Telescope) formaldehyde spectral line data, showcasing that tiered storage can potentially reduce data processing time by up to 38.15%. Similarly, utilizing 802.2 GB data from FAST (Five-hundred-meter Aperture Spherical radio Telescope) observations for pulsar search data processing tests, the tiered storage approach demonstrated a maximum reduction of 29.00% in data processing time. In concurrent testing of data processing workflows, the proposed astronomical data heat correlation algorithm in this paper achieved an average reduction of 17.78% in data processing time compared to centralized storage. Furthermore, in comparison to traditional heat algorithms, it reduced data processing time by 5.15%. The effectiveness of the proposed algorithm is positively correlated with the associativity between the algorithm and the processed data. The tiered storage algorithm based on the characteristics of astronomical data proposed in this paper is poised to provide algorithmic references for large-scale data processing in the field of astronomy in the future.

Publisher

Frontiers Media SA

Reference18 articles.

1. Profiling heliophysics data in the pythonic cloud;Antunes;Front. Astronomy Space Sci.,2022

2. Photometric redshift estimation based on data mining with PhotoRApToR;Cavuoti;Exp. Astron.,2015

3. Nvmm-oriented hierarchical persistent client caching for lustre;Cheng;ACM Trans. Storage (TOS),2021

4. Learning in big data: introduction to machine learning;El Bouchefry,2020

5. Madats: managing data on tiered storage for scientific workflows;Ghoshal,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing Diversity Paradigm for the Utilization of Unused Telephony and Marine Infrastructure;International Journal of Networked and Distributed Computing;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3