Measurement and calibration of non-linear shear terms in galaxy cluster fields

Author:

Liu Binyang,Dell’Antonio Ian,Chotard Nicolas,Clowe Douglas

Abstract

IntroductionGalaxy cluster lensing is a powerful tool for measuring the mass of galaxy clusters, but accurate shear measurement and calibration are critical to obtaining reliable results. This study focuses on the measurement and calibration of weak lensing shears to improve mass estimates in cluster lensing. To deal with the problem, we first developed an image simulation pipeline, jedisim, which utilizes galaxy images extracted from the Hubble Space Telescope (HST) Ultra Deep Field (UDF) and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS).MethodsThe simulations represent realistic galaxy distributions and morphologies as input sources. The foreground halo with a Navarro–Frenk–White (NFW) profile is constructed such that the lensing signals of background galaxies can be measured by the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) Science Pipelines. By comparing the measured reduced shear gmeas and the true reduced shear gtrue, we observe non-linearity up to g0.6. We fit polynomials to the data with quadratic correction adequate to g0.4. Meanwhile, we conduct mass estimates using the pzmassfitter code on four different clusters.ResultsThe mass estimate results are significantly improved after applying the shear calibration derived from the present work—from 4.954±0.504×1014M to 10.507±0.498×1014M after calibration for a simulated cluster with the mass of 10×1014M. In multiple cases of validation, the estimated results are all consistent with true cluster mass.DiscussionThis study yields the first relationship between reality and shape measurement of the LSST Science Pipelines and serves as the first step toward the overall goal of mass calibration in cluster lensing. By addressing the challenges in shear measurement and calibration, we aim to enhance the accuracy and reliability of mass estimates in galaxy cluster lensing studies.

Publisher

Frontiers Media SA

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3