Testing adiabatic models of energetic electron acceleration at dipolarization fronts

Author:

Chepuri S. N. F.,Jaynes A. N.,Turner D. L.,Gabrielse C.,Cohen I. J.,Baker D. N.,Mauk B. H.,Leonard T.,Blake J. B.,Fennell J. F.

Abstract

Betatron acceleration is commonly cited as a primary accelerator of energetic electrons at dipolarization fronts, and many case studies compare observed energetic electrons measurements to a betatron model. In this work, we extend this to a statistical study. We identified 168 dipolarizations with an enhanced flux of energetic electrons at Magnetospheric Multiscale (MMS). We compared the observed flux of energetic electrons above 1 keV to a betatron acceleration model assuming a source population similar to the population in the quiet plasma sheet and found that, on average, the model slightly overestimated the observation, but there was a wide spread of errors. We then tested characteristics such as position, change in and strength of magnetic field, and wave power to determine if any of these characteristics affected the accuracy of the model; the only clear correlations were that the model was less accurate when the initial total magnetic field was smaller and when there was a higher Ey during the dipolarization. Since the betatron model did not explain our observations very well, we repeated with a full adiabatic model that included a Fermi acceleration component as well. We found that the adiabatic model slightly underestimated the observations, but with a smaller error than the betatron model under the same assumptions. Testing the same parameters, we found that the adiabatic model also did not strongly rely on any of the parameters except the initial magnetic field, and the anti-correlation with Ey was no longer present. The fact that neither model was generally applicable means that either adiabatic processes alone are not enough to explain electron acceleration at dipolarization fronts in general, or the common assumption we used, that the source population has the same phase space density as the cold pre-existing population, is not valid.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference77 articles.

1. Bursty bulk flows in the inner central plasma sheet;Angelopoulos;J. Geophys. Res. Space Phys.,1992

2. Electron acceleration during macroscale magnetic reconnection;Arnold;Phys. Rev. Lett.,2021

3. Electron acceleration signatures in the magnetotail associated with substorms;Asano;J. Geophys. Res. Space Phys.,2010

4. Substorm dipolarization and recovery;Baumjohann;J. Geophys. Res. Space Phys.,1999

5. Particle acceleration in dipolarization events;Birn;J. Geophys. Res. Space Phys.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3