Remote and in-Situ Characterization of Mars Analogs: Coupling Scales to Improve the Search for Microbial Signatures on Mars

Author:

Harris Carolynn M.,Maclay Matthew T.,Lutz Katherine A.,Nathan Vinitra,Ortega Dominguez Noemi A.,Leavitt William D.,Palucis Marisa C.

Abstract

Past environments on Mars contained abundant water, suggesting certain regions may have been conducive to life as we know it and implying the potential for microbial inhabitants. Gale and Jezero craters, home of the Perseverance and Curiosity rovers, hosted ancient lakes that experienced periods of active hydrologic cycling and prolonged drying intervals. Exploration of these basins (and future operations on Mars) will benefit from detailed characterizations of analogous environments on Earth, where life detection strategies at various spatial scales (i.e., rover to orbiter) can be tested and validated. Investigations of terrestrial analogs are critical for understanding (1) how microorganisms generate chemical biosignatures in environments characterized by multiple extreme conditions; (2) the impact of environmental conditions and mineralogy on biosignature preservation; and (3) what technologies and techniques are needed to detect biosignatures remotely or in situ. Here, we survey five terrestrial sites analogous to climate conditions proposed for Late Noachian to Early Hesperian Mars, when craters are thought to have hosted active lakes. We review the geologic setting, environmental conditions, microbial habitability, extant microbial communities, and preserved biomarkers at each analog and discuss their relevance to the search for signs of life in Martian craters with in situ and remote instrumentation. The analogs range from active to desiccated lake systems, temperate to hyper-arid climates, and have acidic to neutral-pH and hypo- to hyper-saline waters. Each analog hosts microorganisms adapted to multiple extremes (polyextremophiles), including aspects of water availability (i.e., surface waters versus shallow subsurface water versus groundwater) and physiochemistry (e.g., water activity, salinity, temperature, alkalinity, pH, and redox potential) that can form macrobiological features such as microbial mats. Comparing the expected achievable spatial resolution of several key Mars instruments to the spatial extent of macrobiological features at each analog reveals that most features are unlikely to be resolved from orbit and require rover-scale instruments for detection. We recommend that future studies at these analogs use multi-scale remote sensing surveys to determine thresholds for detecting macrobiological features and map how patterns in mineralogy or physical characteristics of environments correlate to modern-day microbial communities or preserved biomarkers. It will also be critical to determine how the characteristics of macrobiological features, such as areal extent, percent cover, thickness, pigments, etc., impact detectability thresholds. These findings can provide vital information on potential topographic or spectroscopic signatures of life, and at what scales they are detectable. This research is critical to guide sample collection locations within craters like Jezero, and for selecting landing sites for future missions in evaporative Martian basins and other rocky bodies.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference262 articles.

1. Deep UV Raman Spectroscopy for Planetary Exploration: The Search for In Situ Organics;Abbey;Icarus,2017

2. Numerical Modeling of an Impact-Induced Hydrothermal System at the Sudbury Crater;Abramov;J. Geophys. Res.,2004

3. The Astrobiology Primer v2.0;Abrevaya;Astrobiology,2016

4. Biosignature Analysis of Mars Soil Analogs from the Atacama Desert: Challenges and Implications for Future Missions to Mars;Aerts;Astrobiology,2020

5. Phototrophic Biofilms from Río Tinto, an Extreme Acidic Environment, the Prokaryotic Component;Aguilera,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3