DLITE—An inexpensive, deployable interferometer for solar radio burst observations

Author:

Carson George,Kooi Jason E.,Helmboldt Joseph F.,Markowski Blerta B.,Bonanno David J.,Hicks Brian C.

Abstract

Solar radio bursts (SRBs) are brief periods of enhanced radio emission from the Sun. SRBs can provide unique insights into the plasma structure where emission occurs. SRBs can also provide critical information concerning space weather events such as coronal mass ejections or solar energetic particle events. Providing continuous monitoring of SRBs requires a full network of detectors continuously monitoring the Sun. A promising new network is being developed, employing a four-element interferometer called the Deployable Low-band Ionosphere and Transient Experiment (DLITE) array. DLITE, which operates in a 30–40 MHz band, was specifically designed to probe the Earth’s ionosphere using high resolution measurements (1.024-s temporal resolution, 16.276-kHz frequency resolution); however, this also makes DLITE a powerful new tool for providing detailed observations of SRBs at these frequencies. DLITE is particularly adept at detecting long-duration SRBs like Type II and Type IV bursts. DLITE provides high resolution SRB data that can complement ground-based networks like e-Callisto or space-based observations, e.g., from Wind/WAVES. As an inexpensive interferometer, DLITE has strong potential as an educational tool: DLITE can be used to study the ionosphere, SRBs, and even Jovian radio bursts. Future DLITE arrays could be enhanced by using the full 20–80 MHz band accessible by the antennas and employing its millisecond time-resolution capability; this would improve DLITE’s ability to track long-duration bursts, create the opportunity to study short-duration Type III bursts in detail, and, in particular, make the study of Type I bursts practical.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference49 articles.

1. Solar radio-noise of 200 Mc./s. And its relation to solar observations;Allen;Mon. Not. R. Astron. Soc.,1947

2. The absolute spectrum of cas A: An accurate flux density scale and a set of secondary calibrators;Baars;Astron. Astrophys.,1977

3. The coronal mass ejection of 1998 april 20: Direct imaging at radio wavelengths;Bastian;Astrophys. J.,2001

4. Callisto A new concept for solar radio spectrometers;Benz;Sol. Phys.,2005

5. Waves: The radio and plasma wave investigation on the Wind spacecraft;Bougeret;Space Sci. Rev.,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3