Shock Propagation and Associated Particle Acceleration in the Presence of Ambient Solar-Wind Turbulence

Author:

Guo Fan,Giacalone Joe,Zhao Lulu

Abstract

The topic of this review paper is on the influence of solar wind turbulence on shock propagation and its consequence on the acceleration and transport of energetic particles at shocks. As the interplanetary shocks sweep through the turbulent solar wind, the shock surfaces fluctuate and ripple in a range of different scales. We discuss particle acceleration at rippled shocks in the presence of ambient solar-wind turbulence. This strongly affects particle acceleration and transport of energetic particles (both ions and electrons) at shock fronts. In particular, we point out that the effects of upstream turbulence is critical for understanding the variability of energetic particles at shocks. Moreover, the presence of pre-existing upstream turbulence significantly enhances the trapping near the shock of low-energy charged particles, including those near the thermal energy of the incident plasma, even when the shock propagates normal to the average magnetic field. Pre-existing turbulence, always present in space plasmas, provides a means for the efficient acceleration of low-energy particles and overcoming the well known injection problem at shocks.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference108 articles.

1. Observational evidence for stochastic shock drift acceleration of electrons at the Earth’s bow shock;Amano;Phys. Rev. Lett.,2020

2. The acceleration of cosmic rays by shock waves;Axford;Internatl. Cosmic Ray Conf.,1977

3. The source region of an interplanetary type II radio burst;Bale;Geophys. Res. Lett.,1999

4. Shock drift acceleration of electrons;Ball;Publ.Astron. Soc. Aust.,2001

5. The acceleration of cosmic rays in shock fronts – I;Bell;Monthly Notices R. Astronom. Soc.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3