Integrated Pest Management Protocols for Space-Based Bioregenerative Life Support Systems

Author:

Schuerger Andrew C.

Abstract

Human missions to the Moon and Mars will necessarily increase in both duration and complexity over the coming decades. In the past, short-term missions to low-Earth orbit (LEO) or the Moon (e.g., Apollo) utilized physiochemical life support systems for the crews. However, as the spatial and temporal durations of crewed missions to other planetary bodies increase, physiochemical life support systems become burdened with the requirement of frequent resupply missions. Bioregenerative life support systems (BLSS) have been proposed to replace much of the resupply required of physiochemical systems with modules that can regenerate water, oxygen, and food stocks with plant-based biological production systems. In order to protect the stability and productivity of BLSS modules (i.e., small scale units) or habitats (i.e., large scale systems), an integrated pest management (IPM) program is required to prevent, mitigate, and eliminate both insect pests and disease outbreaks in space-based plant-growing systems. A first-order BLSS IPM program is outlined herein that summarizes a collection of protocols that are similar to those used in field, greenhouse, and vertical-farming agricultural systems. However, the space environment offers numerous unusual stresses to plants, and thus, unique space-based IPM protocols will have to be developed. In general, successful operation of space-based BLSS units will be guided by IPM protocols that (1) should be established early in the mission design phase to be effective, (2) will be dynamic in nature changing both spatially and temporally depending on the successional processes afoot within the crewed spacecraft, plant-growing systems, and through time; and (3) can prevent insect/phytopathology outbreaks at very high levels that can approach 100% if properly implemented.

Funder

Kennedy Space Center

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3