Observation-based temperature field simulation at Zhurong landing site, Mars

Author:

Zhang Lei,Zhang Jinhai

Abstract

Modeling the temperature field near the Martian surface is critical for many scientific exploration tasks, such as detecting liquid water and analyzing the existence of saline ice. Meteorological conditions on Mars are highly dramatic, with a daily temperature change of up to 80–100 K. Most previous tasks of surface temperature monitoring on Mars are based on satellite observations, lacking in-situ measured data. Recently, two Martian missions at mid-low latitudes in the northern hemisphere, InSight lander and Zhurong rover, carried out near-surface temperature observations. However, the temperature monitoring of the Zhurong rover obtained data for only some short periods in its working days; thus, the amount of recorded temperature data is inadequate for a whole-day analysis at the landing site. Here we reconstruct the near-surface temperature at the Zhurong landing site by incorporating the continuous temperature data observed at the InSight lander, simultaneously referring to the Martian Climate Database; then, the reconstructed data are used to constrain the numerical simulation of the response of shallow subsurface under the Zhurong landing site. The numerical simulation of heat conduction shows that the daily temperature change under the Zhurong landing site mainly influences the uppermost depth of 0–30 cm, with a daily average temperature of ∼225 K. During the traveling duration of the Zhurong rover (i.e., summer of Mars), the seasonal temperature change within the top 1 m is significant and is related to the thermal properties of possible subsurface media (e.g., soil, ice, and sandstones). Although there might be aqueous activities in Utopia Planitia, our results show that from the perspective of temperature field, there is little possibility of liquid water in the shallow subsurface under the Zhurong landing site. The proposed method in this study provides a new way for the temperature field simulation of the subsurface in areas with insufficient local observations, especially on extraterrestrial objects.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3